Real Analysis I
 Problems

Joseph K. Miller

Last updated: June 25, 2024

Abstract

Here's a list of practice problems organized by topic for the UT Austin preliminary examination on Real Analysis (i.e. the Analysis I exam). They have mostly come from the old prelim exam page, with some of my own exercises dispersed throughout.

Contents

1 Measure Theory 2
2 Density and Limits in L^{p} spaces 3
3 Convergence in Measure 7
4 Weak L^{p} and Fubini 7
5 Maximal Functions 9
6 Weak Derivatives and Absolute Continuity 9
7 Explicit Computations and Counterexamples 10

1 Measure Theory

(1) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a Lipschitz transformation. Show that if A is a set of Lebesgue measure zero, then $T(A)$ also has Lebesgue measure zero.
(2) For any $r \geq 0$ and any $x \in \mathbb{R}^{2}$, define the closed unit ball

$$
B_{r}(x):=\left\{y \in \mathbb{R}^{2}:|y-x| \leq r\right\} .
$$

Let $0<c<1$. Let E be a measurable subset of the unit square $Q=[0,1]^{2} \subset \mathbb{R}^{2}$ with the property that for every $x \in Q$ and every $r>0$ there exists a $y \in B_{r}(x)$ such that $B_{c|x-y|}(y) \subset E$. Prove that $Q \backslash E$ has Lebesgue measure zero.
(3) Let (X, d) be a compact metric space. Let $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of positive Borel measures on X that converge in the weak* topology to a finite positive Borel measure μ. Show that for every compact $K \subset X$,

$$
\mu(K) \geq \limsup _{n \rightarrow \infty} \mu_{n}(K)
$$

(4) Let Z be a subset of R with measure zero. Show that the set $A=\left\{x^{2}: x \in Z\right\}$ also has measure zero.
(5) Let $E \subset \mathbb{R}$ be a measurable set such that $0<|E|<\infty$. Prove that for every $\alpha \in(0,1)$ there is an open interval I such that

$$
|E \cap I| \geq \alpha I
$$

(6) Assume that μ is a finite Borel measure on \mathbb{R}^{n}, and that there exists a constant $0<R<\infty$ such that the k-th moments of μ satisfy the bound

$$
\int|x|^{k} d \mu<R^{k^{r}} \quad \forall k \in \mathbb{N}
$$

for some $0<r \leq 1$. Prove that μ has bounded support contained in $\left\{x \in \mathbb{R}^{n}\right.$: $|x| \leq R\}$ if $r=1$ and in $\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ if $0<r<1$.
(7) Let μ be a measure in the plane for which all open squares are measurable, with the property that there exists $\alpha \geq 1$ such that if two open squares Q, Q^{\prime} are translates of each other and their closures $\bar{Q}, \overline{Q^{\prime}}$ have a non-empty intersection, then

$$
\mu(\bar{Q}) \leq \alpha \mu\left(Q^{\prime}\right)<\infty
$$

(For Lebesgue measure, $\alpha=1$. In general $\alpha \geq 1$.) Show that horizontal lines have zero μ-measure.
(8) Let μ be a Borel measure on $[0,1]$. Assume that
(a) μ and Lebesgue measure are mutually singular.
(b) $\mu([0, t])$ depends continuously on t.
(c) For any function $f:[0,1] \rightarrow \mathbb{R}$, if $f \in L^{1}$ (Lebesgue) then $f \in L^{1}(\mu)$. (Note that f is finite valued)

Show that $\mu \equiv 0$.
(9) Show that the following notions of measurability are equivalent. Here, we let $\lambda: 2^{\mathbb{R}} \rightarrow[0, \infty]$ be the Lebesgue outer measure.
(a) $E \subset \mathbb{R}$ is measurable iff for every $\epsilon>0$ there exists an open set $O \supset E$ such that $\lambda(O \backslash E)<\epsilon$.
(b) $E \subset \mathbb{R}$ is measurable iff for every set $A \subset \mathbb{R}$ (measurable or not) we have

$$
\lambda(A \cap E)+\lambda\left(A \cap E^{c}\right)=\lambda(E)
$$

2 Density and Limits in L^{p} spaces

(1) Show that $\mathcal{C}_{c}\left(\mathbb{R}^{n}\right):=\left\{f \in \mathcal{C}\left(\mathbb{R}^{n}\right): f\right.$ has compact support $\}$ is dense in $L^{1}\left(\mathbb{R}^{n}\right)$.
(2) Find an uncountable family of measurable functions $\mathcal{F} \subset\{f: \mathbb{R} \rightarrow \mathbb{R}$ measurable $\}$ that satisfies the following two conditions:
(a) For all $f \in \mathcal{F},\|f\|_{L^{\infty}(\mathbb{R})}=1$
(b) For all $f, g \in \mathcal{F}$, we have $\|f-g\|_{L^{\infty}(\mathbb{R})}=1$.
(Bonus: Show that this implies L^{∞} is not separable.)
(3) Let $1 \leq p, q \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$. Show that if $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$ then $f * g$ is bounded and continuous on \mathbb{R}^{n}.
(4) Let B be the closed unit ball in \mathbb{R}^{n}, and let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be nonnegative integrable functions on B. Assume that
(a) $f_{k} \rightarrow f$ almost everywhere.
(b) For every $\epsilon>0$ there exists an $M>0$ such that

$$
\int_{\left\{x \in B: f_{k}(x)>M\right\}} f_{k}(x) d x<\epsilon \quad \forall k \in \mathbb{N} .
$$

Show that $f_{k} \rightarrow f$ in $L^{1}(B)$.
(5) Let $\left\{f_{k}\right\}_{k \in \mathbb{N}} \subset L^{p}$ with $1 \leq p<\infty$. If $f_{k} \rightarrow f$ pointwise a.e. and $\left\|f_{k}\right\|_{p} \rightarrow\|f\|_{p}$, show that $\left\|f-f_{k}\right\|_{p} \rightarrow 0$.
(6) Let $f \in L^{1}(\mathbb{R})$ and φ_{ϵ} be a mollifier. This measn that $\varphi_{\epsilon}(x)=\epsilon^{-1} \varphi(x / \epsilon)$ and $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a function that satisfies: $\varphi \geq 0, \varphi$ is compactly supported, and $\int \varphi=1$. Let $f_{\epsilon}:=f * \varphi_{\epsilon}$. Show that

$$
\int_{\mathbb{R}} \liminf _{\epsilon \rightarrow 0}\left|f_{\epsilon}\right| \leq \int_{\mathbb{R}}|f|
$$

(7) Let $f \in L^{1}(X, \mu)$. Prove that for every $\epsilon>0$, there exists $\delta>0$ such that

$$
\left|\int_{A} f d \mu\right|<\epsilon
$$

for all measurable $A \subset X$ such that $\mu(A)<\delta$.
(8) Let $p \in[1, \infty)$ and suppose $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L^{p}(\mathbb{R})$ is a sequence that converges to 0 in $L^{p}(\mathbb{R})$. Prove that one can find a subsequence $\left\{f_{n_{k}}\right\}$ such that $f_{n_{k}} \rightarrow 0$ almost everywhere.
(9) Show that, if $f \in L^{4}(\mathbb{R})$, then

$$
\int|f(\lambda x)-f(x)|^{4} d x \rightarrow 0
$$

as $\lambda \rightarrow 1$.
(10) Let f, g be bounded measurable functions on \mathbb{R}^{n}. Assume that g is integrable and satisfies $\int g=0$. Define $g_{k}(x)=k^{n} g(k x)$ for $k \in \mathbb{N}$. Show that $f * g_{k} \rightarrow 0$ pointwise a.e. as $k \rightarrow \infty$.
(11) Suppose that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of integrable functions on $[0,1]$ such that $\left\|f_{n}\right\|_{L^{1}([0,1])} \leq n^{-2}$ for all $n \in \mathbb{N}$. Show that $f_{n} \rightarrow 0$ pointwise a.e.
(12) Let $f \in L^{\infty}(\mu)$ be a nonnegative bounded μ-measurable function. Consider the set R_{f} consisting of all positive real numbers w such that $\mu(\{x:|f(x)-w| \leq$ $\epsilon\})>0$ for every $\epsilon>0$.
(a) Prove that R_{f} is compact.
(b) Prove that $\|f\|_{L^{\infty}}=\sup R_{f}$.
(13) Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of $L^{1}([0,1])$ functions such that $f_{k} \rightarrow f$ pointwise a.e. Show that $\left\|f_{k}-f\right\|_{L^{1}([0,1])} \rightarrow 0$ if and only if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|\int_{A} f_{k}\right|<\epsilon
$$

for all k and all measurable sets $A \subset[0,1]$ with measure $|A|<\delta$.
(14) Let $f_{k} \rightarrow f$ a.e. on \mathbb{R}. Show that given $\epsilon>0$, there exists E with $|E|<\epsilon$ so that $f_{k} \rightarrow f$ uniformly on $I \backslash E$ for any finite interval I.
(15) Let (X, \mathcal{A}, μ) be a measure space with $\mu(X)<\infty$. Show that a measurable function $f: X \rightarrow[0, \infty)$ is integrable if and only if $\sum_{n=0}^{\infty} \mu(\{x \in X: f(x) \geq n\})$ converges.
(16) Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and $f \in L^{1}(\Omega)$. Prove that

$$
\lim _{p \rightarrow 0}\left[\int_{\Omega}|f|^{p} d \mu\right]^{1 / p}=\exp \left[\int_{\Omega} \log |f| d \mu\right]
$$

where $\exp [-\infty]=0$. To simplify the problem, you may assume that $\log |f| \in$ $L^{1}(\Omega)$.
(17) Let h be a bounded, measurable function such that for any interval I

$$
\left|\int_{I} h\right| \leq|I|^{1 / 2}
$$

Let $h_{\epsilon}(x)=h(x / \epsilon)$. Show that for any A with $|A|<\infty$

$$
\int_{A} h_{\epsilon} \rightarrow 0, \quad \text { as } \epsilon \rightarrow 0
$$

(18) For $\frac{1}{p}+\frac{1}{q}=1$, let

$$
S=\left\{f \in L^{p}(\mathbb{R}): \operatorname{support}(f) \subset[-1,1], \text { and }\|f\|_{L^{p}} \leq 1\right\}
$$

and let g be a fixed but arbitrary function in $L^{q}(\mathbb{R})$ with support $(g) \subset[-1,1]$. Show that the image of S under the map $f \mapsto f * g$ is a compact set in $\mathcal{C}([-2,2])$.
(19) Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be a sequence on non-negative Lebesgue integrable functions on \mathbb{R}^{n} such that

$$
\sum_{k=1}^{\infty} \int\left(f_{k}-f_{k-1}\right)_{+}<\infty, \quad \text { and } \quad \lim _{k \rightarrow \infty} \int f_{k}=0
$$

Show that $\limsup _{k \rightarrow \infty} f_{k}=0$ a.e.

3 Convergence in Measure

(1) Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of measurable functions on \mathbb{R}^{n} that converge to zero in measure on $\left\{y \in \mathbb{R}^{n}:|y-x| \leq 1\right\}$ and are uniformly bounded in $L^{2}\left(\mathbb{R}^{n}\right)$. Show that f_{k} converges to zero in $L^{1}\left(\mathbb{R}^{n}\right)$.
(2) Prove that, on a finite measure space, if $f_{k} \rightarrow f$ in measure and $g_{k} \rightarrow g$ in measure, then $f_{k} g_{k} \rightarrow f g$ in measure.
(3) Suppose that $f_{k} \rightarrow f$ in measure on \mathbb{R} with respect to Lebesgue measure and $\left|f_{k}\right| \leq g \in L^{1}(\mathbb{R})$ for all k. Prove that $f_{k} \rightarrow f$ in $L^{1}(\mathbb{R})$.
(4) Let (X, Σ, μ) be a finite measure space and $1 \leq q<p<\infty$. Let $\left\{f_{k}\right\}_{k=1}^{\infty} \subset$ $L^{p}(X, \mu)$ and $\left\|f_{k}\right\|_{p} \leq 1$ for all k. Assuming that $f_{k} \rightarrow f$ in measure, show that $f \in L^{p}(X, \mu)$ and that $\left\|f_{k}-f\right\|_{q} \rightarrow 0$.

4 Weak L^{p} and Fubini

(1) Let H be a monotone function of f, a non-negative measurable function. Write

$$
\int H(f(x)) d x
$$

in terms of $g(\lambda):=|\{f>\lambda\}|$.
(2) Show that if $p>1$ and $f \in L^{p}([0, \infty))$, then the mean functional of f, defined by

$$
F(y):=\frac{1}{y} \int_{0}^{y} f(t) d t=\int_{0}^{1} f(x y) d x
$$

is also in $L^{p}([0, \infty))$ and moreover

$$
\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

(Hint: Use the generalized Minkowski inequality).
(3) Let f be a locally integrable function on \mathbb{R}^{2}. Assume that, for any given real numbers a and b outside of some set of measure zero, $f(x, a)=f(x, b)$ for almost every $x \in \mathbb{R}$ and $f(a, y)=f(b, y)$ for almost every $y \in \mathbb{R}$. Show that f is constant almost everywhere on \mathbb{R}^{2}.
(4) Let f, g be real valued measurable integrable functions on a measure space (X, μ) and let

$$
F_{t}:=\{x \in X: f(x)>t\}, \quad G_{t}:=\{x \in X: G(x)>t\} .
$$

Prove that

$$
\|f-g\|_{1}=\int_{-\infty}^{\infty} \mu\left(F_{t} \Delta G_{t}\right) d t
$$

where $F_{t} \Delta G_{t}=\left(F_{t} \backslash G_{t}\right) \cup\left(G_{t} \backslash F_{t}\right)$.
(5) Let $0<q<p<\infty$. Let $E \subset \mathbb{R}^{n}$ be measurable with measure $|E|<\infty$. Let f be a measurable function on \mathbb{R}^{n} such that

$$
N:=\sup _{\lambda>0} \lambda^{p}\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\lambda\right\}\right|
$$

is finite.
(a) Prove that $\int_{E}|f|^{q}$ is finite.
(b) Refine the argument of (a) to prove that

$$
\int_{E}|f|^{q} \leq C N^{q / p}|E|^{1-q / p}
$$

where C is a constant depending only on n, p, and q.
(6) Let $p>0$. Give the definition of $L_{\text {weak }}^{p}(\mathbb{R})$ and the quasi-norm N_{p} on this space. Prove that simple functions are not dense in $L_{\text {weak }}^{p}(\mathbb{R})$. That is, there exists an $f \in L_{\text {weak }}^{p}(\mathbb{R})$ such that $N_{p}\left(f-h_{k}\right) \rightarrow 0$ fails to hold for every sequence of simple functions $\left\{h_{k}\right\}_{k=1}^{\infty}$.
(7) Let $1<p<\infty$ and $f(x)=|x|^{-n / p}$ for $x \in \mathbb{R}^{n}$. Prove that $f \in L_{\text {weak }}^{p}\left(\mathbb{R}^{n}\right)$ and f is not the limit of a sequence of $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ functions.

5 Maximal Functions

(1) For $f \in L^{1}(\mathbb{R})$ denote by $M f$ the restricted maximal function defined by

$$
(M f)(x):=\sup _{0<t<1} \frac{1}{2 t} \int_{x-t}^{x+t}|f(z)| d z
$$

Show that $M(f * g) \leq(M f) *(M g)$ for all $f, g \in L^{1}(\mathbb{R})$.
(2) For a function $f \in L^{1}\left(\mathbb{R}^{2}\right)$ let $\widetilde{M} f$ be the unrestricted maximal function

$$
\widetilde{M} f\left(x_{0}, y_{0}\right):=\sup _{Q} \frac{1}{|Q|} \int_{Q}|f(x, y)| d x d y
$$

where the supremum is over all closed cubes $Q \subset \mathbb{R}^{2}$ centered at $\left(x_{0}, y_{0}\right)$.
(a) Show that $\widetilde{M} f\left(x_{0}, y_{0}\right) \leq M_{1} M_{2} f\left(x_{0}, y_{0}\right)$, where

$$
M_{1} f\left(x_{0}, y\right):=\sup _{k>0} \frac{1}{2 k} \int_{x_{0}-k}^{x_{0}+k}|f(x, y)| d x, \quad M_{2} f\left(x, y_{0}\right)=\sup _{l>0} \frac{1}{2 l} \int_{y_{0}-l}^{y_{0}+l}|f(x, y)| d y .
$$

(b) Show that there exists a constant $C>0$ such that if $f \in L^{2}\left(\mathbb{R}^{2}\right)$ then

$$
\|\widetilde{M} f\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

(3) Consider the Hardy-Littlewood maximal function (for balls)

$$
M f(x):=\sup _{B} \frac{1}{|B|} \int_{B}|f|, \quad f(x):= \begin{cases}1, & \text { if }|x| \leq 1 \\ 0, & \text { if }|x|>1\end{cases}
$$

Prove that $M f$ belongs to $L_{\text {weak }}^{1}\left(\mathbb{R}^{n}\right)$.

6 Weak Derivatives and Absolute Continuity

(1) Let $f,\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be increasing functions on $[a, b]$. If $\sum_{k=1}^{\infty} f_{k}$ converges pointwise to f on $[a, b]$, show that $\sum_{k} f_{k}^{\prime}$ converges to f^{\prime} almost everywhere on $[a, b]$.
(2) Let $1<p<\infty$. Assume $f \in L^{p}(\mathbb{R})$ satisfies

$$
\sup _{0<|h|<1} \int\left|\frac{f(x+h)-f(x)}{h}\right|^{p}<\infty .
$$

Show that f has a weak derivative $g \in L^{p}$, which by definition satisfies $\int \psi g=$ $-\int \psi^{\prime} f$ for every $\psi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$.
(3) Assuming $f:[0,1] \rightarrow \mathbb{R}$ is absolutely continuous, prove that f is Lipschitz if and only if f^{\prime} belongs to $L^{\infty}([0,1])$.
(4) Let f be a non-decreasing function on $[0,1]$. You may assume that f is differentiable a.e.
(a) Prove that

$$
\int_{0}^{1} f^{\prime}(t) d t \leq f(1)-f(0)
$$

(b) Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of non-decreasing functions on $[0,1]$ such that $F(x)=\sum_{n=1}^{\infty} f_{n}(x)$ converges for $x \in[a, b]$. Prove that $F^{\prime}(x)=$ $\sum_{n=1}^{\infty} f_{n}^{\prime}(x)$.
(5) Is the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x \sin (1 / x), & x>0 \\ 0, & x=0\end{cases}
$$

absolutely continuous on $[0,1]$? Explain fully.
(6) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be absolutely continuous with compact support, and let $g \in$ $L^{1}(\mathbb{R})$. Prove that $f * g$ is absolutely continuous on \mathbb{R}.

7 Explicit Computations and Counterexamples

(1) Find a non-empty closed set in $L^{2}([0,1])$ which does not contain an element of minimal norm.
(2) Give an example of a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset L^{1}(\mathbb{R})$ such that $f_{n} \rightarrow 0$ a.e. on \mathbb{R}, but f_{n} does not converge to 0 in $L_{\text {loc }}^{1}(\mathbb{R})$.
(3) For any natural number n, construct a function $f \in L^{1}\left(\mathbb{R}^{n}\right)$ such that for any ball $B \subset \mathbb{R}^{n}$, f is not essentially bounded on B.
(4) Let $g \in L^{1}\left(\mathbb{R}^{n}\right)$ with $\|g\|_{L^{1}\left(\mathbb{R}^{n}\right)}<1$. Prove that there is a unique $f \in L^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
f(x)+(f * g)(x)=e^{-|x|^{2}}, \quad x \in \mathbb{R}^{n} \text { a.e. }
$$

(5) Provide an example of a sequence of measurable functions on $[0,1]$ which converges in L^{1} to the zero function but does not converge pointwise a.e.
(6) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be an arbitrary sequence of real numbers in $[0,1]$ (possibly dense). Show that the series $\sum_{k} k^{-3 / 2}\left|x-x_{k}\right|^{-1 / 2}$ converges for almost every $x \in[0,1]$.
(7) Let f be a continuous function on $[0,1]$. Find

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x
$$

Justify your answer.
(8) If $f(x, y) \in L^{2}\left(\mathbb{R}^{2}\right)$, show that $f\left(x+x^{3}, y+y^{3}\right) \in L^{1}\left(\mathbb{R}^{2}\right)$.

