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1 Measure Theory

Definition 1 (Outer Measure). Let X be a set and pu : 2% — [0,00]. We say u is
an outer measure if it is countably sub-additive and p(Q) = 0.

Definition 2 (Lebesgue Measure). The Lebesque measure Ag : 28 — [0, 00] is
defined by

A(E) :=inf {Z vol(Qy) : EC U Qr, Qk cubes} (1)
k=1 k=1

where vol(Q) is the volume of the cube Q. It is an outer measure.

Definition 3 (Measure). Let X be a set and F C 2% be a o-algebra. A function
p: F — [0,00] is a measure if pu is countably additive. The sets E € F are the
measurable sets.

Theorem 1 (Carethéodory’s Theorem). Let X be a set and p be an outer measure.
Then the set

F={ECX :VACX, pul(A)=p(ANE)+ puAnE} (2)

is a o-algebra, and p : F — [0,00] is a measure. We therefore say E € F is
measurable with respect to the outer measure .

Theorem 2 (Lebesgue Measurability). For each E C R?, the following are equivalent
e Forall AC Rd, )\d(A) = )\d<A M E) + )\d(A N Ec)

e For each € > 0, there exists an open set O D A such that \;(O \ A) < e.

Theorem 3 (Measuring Tools). Let u be a measure on X. Let Ay be measurable for
k € N.

o I[fA; C Ay C -+ and A* = ;2| Ak, then p(A*) = limy_,oo p(Ag).

o IfAI DAy D, Ay =Niey Ak, and pu(Ay) < oo then p(Ay) = limy_oo p(Ay).
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e Let us define

limsup A, := ﬁ G A;.

k—o00 k=1 j—Fk

If >0 u(Ay) < oo, then p(limsupy,_, o Ax) = 0. This implication is known as
the Borel-Cantelli Lemma.

Definition 4 (Singular and Absolutely Continuous). Let p, v be two measures on
X.

o We say p is singular with respect to v (written p 1 v) if there exists a mea-
surable set Z C X such that

wW(Z) = v(X\ Z) = 0.

o We say p is absolutely continuous with respect to v (written p < v) if for all
measurable A C X,

v(A)=0 = u(A)=0.

Theorem 4 (Jordan Decompsition®). Let p : 2% — [—00,00] be a signed measure.
Then there exists unique positive measures u*, u~ such that p = ™ — p=.

Theorem 5 (Hahn Decomposition*). Let p : 2% — [—00,00] be a signed measure.
Then there exists measurable sets PN C X such that PN N =( and PUN = X
with the property that

EcP = uE)>0

ECN = puE)<NO.
We call P the positive part and N the negative part of . They satisfy

pH(E)=pENP),  p(E)=-p(ENN).

Theorem 6 (Lebesgue Decomposition®). Let p, v be o-finite signed measures. Then

there exists unique signed measures (1, and pe on X such that p, 1 v, pe < v,
and

[= o+

Theorem 7 (Radon-Nikodym*). Let u,v be two signed o-finite measures on X. If
p <L v, then there exists a unique measurable function f € L'(X,dv) such that

u(B) = [ s

We call f the Radon-Nikodym derivative %ﬁ.
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Definition 5 (Weak Limits). Let { i, }nen, 1o be finite measures on a metric space X .
We say p, weakly converges to p (written p, — p) if for every bounded continuous

function ¢ : X — R we have
[ ot [ oan
X b's

2 Measurable Functions

Definition 6 (Measurability). Let (X, F,u) be a measure space. Then f: X — R
is measurable if for all A € R,

{reX: f(x) >N} eF.

Theorem 8 (Measurable Function ~ Simple). Let (X, F,u) be a measure space,
and f: X — [0,00] measurable. Then there exists an increasing sequence of simple
functions' Sy such that f(z) = limy_,o Sp(z) for every v € X.

Theorem 9 (Egorov). Let E C R™ be a finite measurable set and {f,} a sequence
of measurable functions on E which converge pointwise a.e. to a limit f. Then for
all € > 0, there exists a set F' C E such that |F| < € and f, converges uniformly to
fonE\F.

Theorem 10 (Lusin). Let E C R™ be a measurable set with finite measure, and let
f i+ E — R be finite valued. Then f is measurable if and only if for every e > 0 there
exists a set ' C E with |F| < € such that f : E\ F — R is continuous (with respect
to the subspace topology).

Definition 7 (Convergence in Measure). Let {f,} and f be measurable functions
defined on a measurable set E C R™. Then f, is said to converge in measure to f if
for every A > 0 we have

lim[{z € B [fu(z) = f(2)] = A} = 0.

3 Integration

Theorem 11 (Chebyshev’s Inequality). Let f € L'(E). Then we have for all o > 0
that

o e B \f) 2 o}l < 1 [ 1f@lds,

LA simple function is a finite sum of characteristic functions of measurable sets.
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Theorem 12 (Fatou’s Lemma). Let {f,}>2, C LY(E) be a sequence of positive
functions. Then we have

n—oo n—oo

/liminffn( dx<hm1nf/ folz
E

This holds even if the left hand side is infinite.

Theorem 13 (Monotone Convergence). Let {f,}°°, C L'(E) be an increasing se-
quence of positive functions which converge pointwise almost everywhere to f. Then,
regardless of the integrability of f, we have

lim fn )da::/f(:c)dx

n—oo

Theorem 14 (Bounded Convergence). Let |E| < oco. If {f,} C L'(E) is a sequence
of functions such that |f,| < M < oo for all n, and f, — f a.e., then

n—oo

lim fn )dx:/Ef(x)dx

Theorem 15 (Dominated Convergence). Let {f,} C LY(R?) be a sequence of func-
tions which converge pointwise a.e. to f € LY(R?). If there is an integrable function
g € LY(RY) such that |f,| < |g| for all n, then we have

n—oo

lim folx)de = | f(x)dx
R4 R4

Theorem 16 (Jensen’s Inequality). Let f € L'(E) with |E| < oo, and let p : R — R
be a convex function. Then we have

o (a7 [ 10ae) < iy [t

This inequality is reversed if @ is concave.

Theorem 17 (Generalized Dominated Convergence*). Let {f,} C L'(R?) be a se-
quence of functions that converge pointwise a.e. to f. Let {g,} C L'(RY) be a
sequence of functions such that

o |ful < |gn| for each n,

o There exists a g € L*(RY) such that g, — g a.e.
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o We have as n — o0
/ gn(z)dz — g(x)dx
Rd R

Then, we obtain that
fo(x)de — | f(z)dz.
R R4

4 L? spaces

Definition 8 (Conjugate Exponents). Let 1 < p < oo. We define p’ to be the
conjugate exponent to p given by the unique number which satisfies

1 1
p D

For p =1, we take p' = oo and for p = 0o, we take p’ = 1.

Theorem 18 (Holder’s Inequality). Let 1 < p < oo. If p' is the conjugate exponent
to p, then for any f,g measurable we have

ﬂMSMWMm

Theorem 19 (Minkowski’s Inequality). Let f,g be measurable functions and 1 <
p < oo. Then

1f + gllee < [ fllee + llgllze

Theorem 20 (Reverse Holder). Let f be a measurable function. Then for1 < p < oo
we can calulate

|quw{

[ raataydal

g€ L¥ and gl » < 1}.

Theorem 21 (L Duality /Riesz Representation). Let 1 < p < oo. Then
(LP(RY))™ ~ LY (RY).

That is, any continuous linear map T : LP(R?) — R can be identified with a function
g € L (RY) such that

7() = [ g
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Definition 9 (Weak Convergence in LP). For 1 < p < oo we say a sequence {f,} C
LP converges weakly to f € LP, written as f, — f if for every g € L” we have

/fng—>/fg-

For p = oo, we can give an identical definition, but instead we call it weak * conver-
gence (this is because (L')* ~ L*°, but (L')** % L').

Theorem 22 (Weak Compactness in LP). For 1 < p < oo, for every bounded
sequence {f,} C LP(RY), there exists a subsequence {f,,} and f € LP(R?) such that
foe — [. Equivalently, this says that the unit ball on LP is compact in the weak

topology.

Definition 10 (Convolution). For two functions f,g € L*(R?) we define their con-
volution by

frg(x):= » flz —y)g(y)dy.

One can check that this defines an L' function. This same formula defines convolu-
tion on different classes of spaces.

Theorem 23 (L? as a Hilbert Space). We can define an inner product on L*(R?)
by considering

(Foohis = [ gl
R
Definition 11 (Weak L?). A measurable function f lies in weak L if
Np(f) = sup Xl{w - |f(w)] = A} < o0
>

We call the quantity N,(f) the weak LP norm of f.

5 Fubini’s Theorem

Theorem 24 (Fubini’s Theorem). Let f = f(z,y) € L*(R? x RY). Then, for almost
every x, the function y — f(x,y) is measurable and in L'(R?). Moreover, we have

/ f(x,y)d(z,y) =/ f(x,y)da:dy:/ f(z,y)dydz.
R x R4 Rd JRA Rd JRd
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Theorem 25 (Tonelli’s Theorem). Let f = f(x,y) > 0 be measurable. Then for
almost every x the function y — f(x,y) is measurable and

[ tawien = [ [ fepdsay= [ [ i
R x R4 R JRd
This holds regardless of the integrability of f.

Theorem 26 (Layer Cake Formula). For 1 < p < oo, we can calculate the LP norm
of a measurable function f by the formula

/‘vwzp/ N1z € R : [£(x)] = A}dA
R4 0

6 Lebesgue Differentiation Theorem

Theorem 27 (Lebesgue Differentiation Theorem). Let f € L} (RY). Then for
almost every point v € RY, we have

1
lim dy = .
) o, TN =17

This theorem can be genemlized to

d_
i ], )~ Tl =0,

and for more general classes of balls B,.

Definition 12 (Maximal Function). For f € LY(R?), we define the Hardy-Littlewood
Mazimal function by

B>z |B| B
where the supremum is taken over all balls containing x.

Theorem 28 (Vitali’'s Covering Lemma). Let G be a possibly uncountable collec-
tion of balls B C RY which have uniformly bounded diameter. Then there exists a
countable collection of disjoint balls { B}, such that

UB. c D 5B;.
g k=1

Here, we are using the notation that 5By 1s the ball with the same center as By but
with 5 times its radius.
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Theorem 29 (Hardy-Littlewood Maximal Inequality). There ezists a constant C' >
0 such that for any f € LY(R?) we have

C
{z € RY: [MF(@)] 2 M < Sl ey

Equivalently, the mazimal function M : L'(R?) — L}

L un(RY) s continuous.

7 Absolute Continuity

Definition 13 (Bounded Variation). Let f : [a,b] — R. For a partition I' = {a =
xo, X1, ..., T, = b} of the interval |a,b], we define the sum

Sr(f) = Z |f (i) — fzioa)].

The function f is said to be Bounded Variation if supp Sr(f) < 0.

Definition 14 (Absolute Continuity). A function f : [a,b] — R is Absolutely
Continuous if for every e > 0, there exists a § > 0 such that for any collection of
non-overlapping sub-intervals {[a;, b;]}2, of |a,b] with

o0

=1

then we have

Z 1£(b) — fla)| < e.

Theorem 30 (Absolute Continuity < Integration by Parts). A function f : [a,b] —
R is absolutely continuous if and only if f' exists a.e., f' is integrable, and

f(:v)—f(a):/xfﬁ fora<w<b,

8 Functional Analysis™

Theorem 31 (Baire Category Theorem). Let (X, d) be a complete metric space.
Then for any countable collection {U,}5°, of open dense subsets of X,

ﬂ U, is dense in X.

n=1
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Definition 15 (Weak/Weak* Convergence). Let X be a Banach space. Let {f,} C
X* be a sequence of functions. Then we say that f, converges weakly to f € X* if
for every G € X we have.

G(fa) = G(f)
We say that f, converges weak™ to f € X* if for every x € X we have
falz) — f(x).

If X s reflexive (in other words, X ~ X**) then we have weak convergence and
weak* convergent are equivalent.

Theorem 32 (Hahn-Banach). ...

Theorem 33 (Uniform Boundedness Principle). ...

(

(

Theorem 34 (Open Mapping Theorem). ...

Theorem 35 (Closed Graph Theorem). ...
(

Theorem 36 (Banach-Alaoglu). ...



