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1 Measure Theory

Definition 1 (Outer Measure). Let X be a set and µ : 2X → [0,∞]. We say µ is
an outer measure if it is countably sub-additive and µ(∅) = 0.

Definition 2 (Lebesgue Measure). The Lebesgue measure λd : 2R
d → [0,∞] is

defined by

λd(E) := inf

{
∞∑
k=1

vol(Qk) : E ⊂
∞⋃
k=1

Qk, Qk cubes

}
(1)

where vol(Q) is the volume of the cube Q. It is an outer measure.

Definition 3 (Measure). Let X be a set and F ⊂ 2X be a σ-algebra. A function
µ : F → [0,∞] is a measure if µ is countably additive. The sets E ∈ F are the
measurable sets.

Theorem 1 (Carethéodory’s Theorem). Let X be a set and µ be an outer measure.
Then the set

F := {E ⊂ X : ∀A ⊂ X, µ(A) = µ(A ∩ E) + µ(A ∩ Ec)} (2)

is a σ-algebra, and µ : F → [0,∞] is a measure. We therefore say E ∈ F is
measurable with respect to the outer measure µ.

Theorem 2 (Lebesgue Measurability). For each E ⊂ Rd, the following are equivalent

• For all A ⊂ Rd, λd(A) = λd(A ∩ E) + λd(A ∩ Ec).

• For each ϵ > 0, there exists an open set O ⊃ A such that λd(O \ A) < ϵ.

Theorem 3 (Measuring Tools). Let µ be a measure on X. Let Ak be measurable for
k ∈ N.

• If A1 ⊂ A2 ⊂ · · · and A∗ =
⋃∞

k=1Ak, then µ(A∗) = limk→∞ µ(Ak).

• If A1 ⊃ A2 ⊃ · · · , A∗ =
⋂∞

k=1Ak, and µ(A1) < ∞ then µ(A∗) = limk→∞ µ(Ak).
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• Let us define

lim sup
k→∞

Ak :=
∞⋂
k=1

∞⋃
j=k

Aj.

If
∑∞

k=1 µ(Ak) < ∞, then µ(lim supk→∞Ak) = 0. This implication is known as
the Borel-Cantelli Lemma.

Definition 4 (Singular and Absolutely Continuous). Let µ, ν be two measures on
X.

• We say µ is singular with respect to ν (written µ ⊥ ν) if there exists a mea-
surable set Z ⊂ X such that

µ(Z) = ν(X \ Z) = 0.

• We say µ is absolutely continuous with respect to ν (written µ ≪ ν) if for all
measurable A ⊂ X,

ν(A) = 0 =⇒ µ(A) = 0.

Theorem 4 (Jordan Decompsition*). Let µ : 2X → [−∞,∞] be a signed measure.
Then there exists unique positive measures µ+, µ− such that µ = µ+ − µ−.

Theorem 5 (Hahn Decomposition*). Let µ : 2X → [−∞,∞] be a signed measure.
Then there exists measurable sets P,N ⊂ X such that P ∩ N = ∅ and P ∪ N = X
with the property that

E ⊂ P =⇒ µ(E) ≥ 0

E ⊂ N =⇒ µ(E) ≤ 0.

We call P the positive part and N the negative part of µ. They satisfy

µ+(E) = µ(E ∩ P ), µ−(E) = −µ(E ∩N).

Theorem 6 (Lebesgue Decomposition*). Let µ, ν be σ-finite signed measures. Then
there exists unique signed measures µ⊥ and µ≪ on X such that µ⊥ ⊥ ν, µ≪ ≪ ν,
and

µ = µ⊥ + µ≪.

Theorem 7 (Radon-Nikodym*). Let µ, ν be two signed σ-finite measures on X. If
µ ≪ ν, then there exists a unique measurable function f ∈ L1(X, dν) such that

µ(E) =

∫
E

fdν.

We call f the Radon-Nikodym derivative dµ
dν
.
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Definition 5 (Weak Limits). Let {µn}n∈N, µ be finite measures on a metric space X.
We say µn weakly converges to µ (written µn ⇀ µ) if for every bounded continuous
function ϕ : X → R we have ∫

X

ϕdµn →
∫
X

ϕdµ.

2 Measurable Functions

Definition 6 (Measurability). Let (X,F , µ) be a measure space. Then f : X → R
is measurable if for all λ ∈ R,

{x ∈ X : f(x) ≥ λ} ∈ F .

Theorem 8 (Measurable Function ≈ Simple). Let (X,F , µ) be a measure space,
and f : X → [0,∞] measurable. Then there exists an increasing sequence of simple
functions1 Sk such that f(x) = limk→∞ Sk(x) for every x ∈ X.

Theorem 9 (Egorov). Let E ⊂ Rn be a finite measurable set and {fn} a sequence
of measurable functions on E which converge pointwise a.e. to a limit f . Then for
all ϵ > 0, there exists a set F ⊂ E such that |F | < ϵ and fn converges uniformly to
f on E \ F .

Theorem 10 (Lusin). Let E ⊂ Rn be a measurable set with finite measure, and let
f : E → R be finite valued. Then f is measurable if and only if for every ϵ > 0 there
exists a set F ⊂ E with |F | < ϵ such that f : E \ F → R is continuous (with respect
to the subspace topology).

Definition 7 (Convergence in Measure). Let {fn} and f be measurable functions
defined on a measurable set E ⊂ Rn. Then fn is said to converge in measure to f if
for every λ > 0 we have

lim
k→

|{x ∈ E : |fn(x)− f(x)| ≥ λ}| = 0.

3 Integration

Theorem 11 (Chebyshev’s Inequality). Let f ∈ L1(E). Then we have for all α > 0
that

|{x ∈ E : |f(x)| ≥ α}| ≤ 1

α

∫
E

|f(x)|dx.
1A simple function is a finite sum of characteristic functions of measurable sets.
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Theorem 12 (Fatou’s Lemma). Let {fn}∞n=1 ⊂ L1(E) be a sequence of positive
functions. Then we have∫

E

lim inf
n→∞

fn(x)dx ≤ lim inf
n→∞

∫
E

fn(x)dx.

This holds even if the left hand side is infinite.

Theorem 13 (Monotone Convergence). Let {fn}∞n=1 ⊂ L1(E) be an increasing se-
quence of positive functions which converge pointwise almost everywhere to f . Then,
regardless of the integrability of f , we have

lim
n→∞

∫
E

fn(x)dx =

∫
E

f(x)dx.

Theorem 14 (Bounded Convergence). Let |E| < ∞. If {fn} ⊂ L1(E) is a sequence
of functions such that |fn| ≤ M < ∞ for all n, and fn → f a.e., then

lim
n→∞

∫
E

fn(x)dx =

∫
E

f(x)dx.

Theorem 15 (Dominated Convergence). Let {fn} ⊂ L1(Rd) be a sequence of func-
tions which converge pointwise a.e. to f ∈ L1(Rd). If there is an integrable function
g ∈ L1(Rd) such that |fn| ≤ |g| for all n, then we have

lim
n→∞

∫
Rd

fn(x)dx =

∫
Rd

f(x)dx.

Theorem 16 (Jensen’s Inequality). Let f ∈ L1(E) with |E| < ∞, and let φ : R → R
be a convex function. Then we have

φ

(
1

|E|

∫
E

f(x)dx

)
≤ 1

|E|

∫
E

φ(f(x))dx.

This inequality is reversed if φ is concave.

Theorem 17 (Generalized Dominated Convergence*). Let {fn} ⊂ L1(Rd) be a se-
quence of functions that converge pointwise a.e. to f . Let {gn} ⊂ L1(Rd) be a
sequence of functions such that

• |fn| ≤ |gn| for each n,

• There exists a g ∈ L1(Rd) such that gn → g a.e.
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• We have as n → ∞ ∫
Rd

gn(x)dx →
∫
Rd

g(x)dx

Then, we obtain that ∫
Rd

fn(x)dx →
∫
Rd

f(x)dx.

4 Lp spaces

Definition 8 (Conjugate Exponents). Let 1 ≤ p ≤ ∞. We define p′ to be the
conjugate exponent to p given by the unique number which satisfies

1

p
+

1

p′
= 1.

For p = 1, we take p′ = ∞ and for p = ∞, we take p′ = 1.

Theorem 18 (Hölder’s Inequality). Let 1 ≤ p ≤ ∞. If p′ is the conjugate exponent
to p, then for any f, g measurable we have∫

|fg| ≤ ∥f∥Lp∥g∥Lp′

Theorem 19 (Minkowski’s Inequality). Let f, g be measurable functions and 1 ≤
p ≤ ∞. Then

∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp

Theorem 20 (Reverse Hölder). Let f be a measurable function. Then for 1 ≤ p ≤ ∞
we can calulate

∥f∥Lp = sup

{∣∣∣∣∫
Rd

f(x)g(x)dx

∣∣∣∣ : g ∈ Lp′ and ∥g∥Lp′ ≤ 1

}
.

Theorem 21 (Lp Duality/Riesz Representation). Let 1 < p < ∞. Then(
Lp(Rd)

)∗ ≃ Lp′(Rd).

That is, any continuous linear map T : Lp(Rd) → R can be identified with a function
g ∈ Lp′(Rd) such that

T (f) =

∫
Rd

f(x)g(x)dx.
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Definition 9 (Weak Convergence in Lp). For 1 < p < ∞ we say a sequence {fn} ⊂
Lp converges weakly to f ∈ Lp, written as fn ⇀ f if for every g ∈ Lp′ we have∫

fng →
∫

fg.

For p = ∞, we can give an identical definition, but instead we call it weak * conver-
gence (this is because (L1)∗ ≃ L∞, but (L1)∗∗ ̸≃ L1).

Theorem 22 (Weak Compactness in Lp). For 1 < p < ∞, for every bounded
sequence {fn} ⊂ Lp(Rd), there exists a subsequence {fnk

} and f ∈ Lp(Rd) such that
fnk

⇀ f . Equivalently, this says that the unit ball on Lp is compact in the weak
topology.

Definition 10 (Convolution). For two functions f, g ∈ L1(Rd) we define their con-
volution by

f ∗ g(x) :=
∫
Rd

f(x− y)g(y)dy.

One can check that this defines an L1 function. This same formula defines convolu-
tion on different classes of spaces.

Theorem 23 (L2 as a Hilbert Space). We can define an inner product on L2(Rd)
by considering

⟨f, g⟩L2 :=

∫
Rd

f(x)g(x)dx.

Definition 11 (Weak Lp). A measurable function f lies in weak Lp if

Np(f) := sup
λ>0

λp|{x : |f(x)| ≥ λ}| < ∞

We call the quantity Np(f) the weak Lp norm of f .

5 Fubini’s Theorem

Theorem 24 (Fubini’s Theorem). Let f = f(x, y) ∈ L1(Rd×Rd). Then, for almost
every x, the function y 7→ f(x, y) is measurable and in L1(Rd). Moreover, we have∫

Rd×Rd

f(x, y)d(x, y) =

∫
Rd

∫
Rd

f(x, y)dxdy =

∫
Rd

∫
Rd

f(x, y)dydx.
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Theorem 25 (Tonelli’s Theorem). Let f = f(x, y) ≥ 0 be measurable. Then for
almost every x the function y 7→ f(x, y) is measurable and∫

Rd×Rd

f(x, y)d(x, y) =

∫
Rd

∫
Rd

f(x, y)dxdy =

∫
Rd

∫
Rd

f(x, y)dydx.

This holds regardless of the integrability of f .

Theorem 26 (Layer Cake Formula). For 1 ≤ p < ∞, we can calculate the Lp norm
of a measurable function f by the formula∫

Rd

|f |p = p

∫ ∞

0

λp−1|{x ∈ Rd : |f(x)| ≥ λ}|dλ

6 Lebesgue Differentiation Theorem

Theorem 27 (Lebesgue Differentiation Theorem). Let f ∈ L1
loc(Rd). Then for

almost every point x ∈ Rd, we have

lim
r→0

1

|Br(x)|

∫
Br(x)

|f(y)|dy = |f(x)|.

This theorem can be generalized to

lim
r→0

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)|dy = 0,

and for more general classes of balls Br.

Definition 12 (Maximal Function). For f ∈ L1(Rd), we define the Hardy-Littlewood
Maximal function by

Mf(x) := sup
B∋x

1

|B|

∫
B

|f(y)|dy

where the supremum is taken over all balls containing x.

Theorem 28 (Vitali’s Covering Lemma). Let G be a possibly uncountable collec-
tion of balls B ⊂ Rd which have uniformly bounded diameter. Then there exists a
countable collection of disjoint balls {Bk}∞k=1 such that⋃

G

Bα ⊂
∞⋃
k=1

5Bk.

Here, we are using the notation that 5Bk is the ball with the same center as Bk but
with 5 times its radius.
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Theorem 29 (Hardy-Littlewood Maximal Inequality). There exists a constant C >
0 such that for any f ∈ L1(Rd) we have

|{x ∈ Rd : |Mf(x)| ≥ λ}| ≤ C

λ
∥f∥L1(Rd).

Equivalently, the maximal function M : L1(Rd) → L1
weak(Rd) is continuous.

7 Absolute Continuity

Definition 13 (Bounded Variation). Let f : [a, b] → R. For a partition Γ = {a =
x0, x1, . . . , xn = b} of the interval [a, b], we define the sum

SΓ(f) :=
n∑

i=1

|f(xi)− f(xi−1)|.

The function f is said to be Bounded Variation if supΓ SΓ(f) < ∞.

Definition 14 (Absolute Continuity). A function f : [a, b] → R is Absolutely
Continuous if for every ϵ > 0, there exists a δ > 0 such that for any collection of
non-overlapping sub-intervals {[ai, bi]}∞i=1 of [a, b] with

∞∑
i=1

(bi − ai) < δ

then we have
∞∑
i=1

|f(bi)− f(ai)| < ϵ.

Theorem 30 (Absolute Continuity ⇔ Integration by Parts). A function f : [a, b] →
R is absolutely continuous if and only if f ′ exists a.e., f ′ is integrable, and

f(x)− f(a) =

∫ x

a

f ′, for a ≤ x ≤ b.

8 Functional Analysis*

Theorem 31 (Baire Category Theorem). Let (X, d) be a complete metric space.
Then for any countable collection {Un}∞n=1 of open dense subsets of X,

∞⋂
n=1

Un is dense in X.
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Definition 15 (Weak/Weak* Convergence). Let X be a Banach space. Let {fn} ⊂
X∗ be a sequence of functions. Then we say that fn converges weakly to f ∈ X∗ if
for every G ∈ X∗∗ we have.

G(fn) → G(f).

We say that fn converges weak* to f ∈ X∗ if for every x ∈ X we have

fn(x) → f(x).

If X is reflexive (in other words, X ≃ X∗∗) then we have weak convergence and
weak* convergent are equivalent.

Theorem 32 (Hahn-Banach). ...

Theorem 33 (Uniform Boundedness Principle). ...

Theorem 34 (Open Mapping Theorem). ...

Theorem 35 (Closed Graph Theorem). ...

Theorem 36 (Banach-Alaoglu). ...
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