1

Real Analysis I

Lecture Notes

Joseph K. Miller

Last updated: June 30, 2024

Abstract: These notes were prepared for a summer "bootcamp" to prepare graduate students in mathematics for the real analysis prelim exam. The sections, theorems, and definitions marked with * below will stand for more advanced topics which are less likely to appear on exams.

Contents

1	Measure Theory [How do we measure sets?]	2
2	Measurable Functions The family of measurable functions is almost continuous.	4
3	Integration ¬When do limits and integrals commute? →	5
4	L^p spaces $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	6
5	Fubini's Theorem ^C Do integrals on product spaces commute?	8
6	Lebesgue Differentiation Theorem Local averages converge almost everywhere.	8
7	Absolute Continuity ¬When is the fundamental theorem of calculus valid?¬	9
8	Functional Analysis* 「Infinte dimensional linear algebra」	10

1 Measure Theory

Definition 1 (Outer Measure). Let X be a set and $\mu : 2^X \to [0, \infty]$. We say μ is an outer measure if it is countably sub-additive and $\mu(\emptyset) = 0$.

Definition 2 (Lebesgue Measure). The Lebesgue measure $\lambda_d : 2^{\mathbb{R}^d} \to [0, \infty]$ is defined by

$$\lambda_d(E) := \inf \left\{ \sum_{k=1}^{\infty} vol(Q_k) : \quad E \subset \bigcup_{k=1}^{\infty} Q_k, \quad Q_k \ cubes \right\}$$
(1)

where vol(Q) is the volume of the cube Q. It is an outer measure.

Definition 3 (Measure). Let X be a set and $\mathcal{F} \subset 2^X$ be a σ -algebra. A function $\mu : \mathcal{F} \to [0, \infty]$ is a measure if μ is countably additive. The sets $E \in \mathcal{F}$ are the measurable sets.

Theorem 1 (Carethéodory's Theorem). Let X be a set and μ be an outer measure. Then the set

$$\mathcal{F} := \{ E \subset X : \forall A \subset X, \quad \mu(A) = \mu(A \cap E) + \mu(A \cap E^c) \}$$
(2)

is a σ -algebra, and $\mu : \mathcal{F} \to [0, \infty]$ is a measure. We therefore say $E \in \mathcal{F}$ is measurable with respect to the outer measure μ .

Theorem 2 (Lebesgue Measurability). For each $E \subset \mathbb{R}^d$, the following are equivalent

- For all $A \subset \mathbb{R}^d$, $\lambda_d(A) = \lambda_d(A \cap E) + \lambda_d(A \cap E^c)$.
- For each $\epsilon > 0$, there exists an open set $O \supset E$ such that $\lambda_d(O \setminus E) < \epsilon$.

Theorem 3 (Measuring Tools). Let μ be a measure on X. Let A_k be measurable for $k \in \mathbb{N}$.

- If $A_1 \subset A_2 \subset \cdots$ and $A^* = \bigcup_{k=1}^{\infty} A_k$, then $\mu(A^*) = \lim_{k \to \infty} \mu(A_k)$.
- If $A_1 \supset A_2 \supset \cdots$, $A_* = \bigcap_{k=1}^{\infty} A_k$, and $\mu(A_1) < \infty$ then $\mu(A_*) = \lim_{k \to \infty} \mu(A_k)$.
- Let us define

$$\limsup_{k \to \infty} A_k := \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} A_j$$

If $\sum_{k=1}^{\infty} \mu(A_k) < \infty$, then $\mu(\limsup_{k\to\infty} A_k) = 0$. This implication is known as the Borel-Cantelli Lemma.

|2|

Theorem 4 (Vitali's Covering Theorem). Let \mathcal{F} be a collection of non-degenerate closed balls in \mathbb{R}^d that satisfies

$$\sup\{diam(B)|B \in \mathcal{F}\} < \infty \tag{3}$$

where diam(B) is the diameter of the ball B. Then there exists a countable subfamily $\mathcal{G} \subset \mathcal{F}$ of disjoint closed balls such that

$$\bigcup_{B\in\mathcal{F}}\subset\bigcup_{B\in\mathcal{G}}5B.$$

Theorem 5 (Open Set Approximation). Let $U \subset \mathbb{R}^d$ be open, and R > 0. Then, there exists a countable collection \mathcal{G} of disjoint closed balls in \mathbb{R}^d with diam(B) < Rfor all $B \in \mathcal{G}$ and

$$\lambda_d \left(U \setminus \bigcup_{B \in \mathcal{G}} B \right) = 0.$$

Definition 4 (Singular and Absolutely Continuous). Let μ, ν be two measures on X.

• We say μ is singular with respect to ν (written $\mu \perp \nu$) if there exists a measurable set $Z \subset X$ such that

$$\mu(Z) = \nu(X \setminus Z) = 0.$$

• We say μ is absolutely continuous with respect to ν (written $\mu \ll \nu$) if for all measurable $A \subset X$,

$$\nu(A) = 0 \implies \mu(A) = 0.$$

Definition 5 (Weak Limits). Let $\{\mu_n\}_{n \in \mathbb{N}}, \mu$ be finite measures on a metric space X. We say μ_n weakly converges to μ (written $\mu_n \rightarrow \mu$) if for every bounded continuous function $\phi: X \rightarrow \mathbb{R}$ we have

$$\int_X \phi d\mu_n \to \int_X \phi d\mu.$$

Theorem 6 (Jordan Decompsition^{*}). Let $\mu : 2^X \to [-\infty, \infty]$ be a signed measure. Then there exists unique positive measures μ^+, μ^- such that $\mu = \mu^+ - \mu^-$.

3

Theorem 7 (Hahn Decomposition^{*}). Let $\mu : 2^X \to [-\infty, \infty]$ be a signed measure. Then there exists measurable sets $P, N \subset X$ such that $P \cap N = \emptyset$ and $P \cup N = X$ with the property that

$$E \subset P \implies \mu(E) \ge 0$$
$$E \subset N \implies \mu(E) \le 0.$$

We call P the positive part and N the negative part of μ . They satisfy

$$\mu^{+}(E) = \mu(E \cap P), \qquad \mu^{-}(E) = -\mu(E \cap N).$$

Theorem 8 (Lebesgue Decomposition^{*}). Let μ, ν be σ -finite signed measures. Then there exists unique signed measures μ_{\perp} and μ_{\ll} on X such that $\mu_{\perp} \perp \nu, \mu_{\ll} \ll \nu$, and

$$\mu = \mu_{\perp} + \mu_{\ll}.$$

Theorem 9 (Radon-Nikodym^{*}). Let μ, ν be two signed σ -finite measures on X. If $\mu \ll \nu$, then there exists a unique measurable function f on X such that for every measurable E we have

$$\mu(E) = \int_E f d\nu.$$

We call f the Radon-Nikodym derivative $\frac{d\mu}{d\nu}$.

2 Measurable Functions

Definition 6 (Measurability). Let (X, \mathcal{F}, μ) be a measure space. Then $f : X \to \mathbb{R}$ is measurable if for all $\lambda \in \mathbb{R}$,

$$\{x \in X : f(x) \ge \lambda\} \in \mathcal{F}.$$

Definition 7 (Convergence in Measure). Let $\{f_n\}$ and f be measurable functions defined on a measurable set $E \subset \mathbb{R}^n$. Then f_n is said to converge in measure to f if for every $\lambda > 0$ we have

$$\lim_{k \to 1} |\{x \in E : |f_n(x) - f(x)| \ge \lambda\}| = 0.$$

Theorem 10 (Measurable Function \approx Simple). Let (X, \mathcal{F}, μ) be a measure space, and $f: X \to [0, \infty]$ measurable. Then there exists an increasing sequence of simple functions¹ S_k such that $f(x) = \lim_{k \to \infty} S_k(x)$ for every $x \in X$.

¹A simple function is a finite sum of characteristic functions of measurable sets.

Theorem 11 (Egorov). Let $E \subset \mathbb{R}^n$ be a finite measurable set and $\{f_n\}$ a sequence of measurable functions on E which converge pointwise a.e. to a limit f. Then for all $\epsilon > 0$, there exists a set $F \subset E$ such that $|F| < \epsilon$ and f_n converges uniformly to f on $E \setminus F$.

Theorem 12 (Lusin). Let $E \subset \mathbb{R}^n$ be a measurable set with finite measure, and let $f: E \to \mathbb{R}$ be finite valued. Then f is measurable if and only if for every $\epsilon > 0$ there exists a set $F \subset E$ with $|F| < \epsilon$ such that $f: E \setminus F \to \mathbb{R}$ is continuous (with respect to the subspace topology).

3 Integration

Theorem 13 (Chebyshev's Inequality). Let $f \in L^1(E)$. Then we have for all $\alpha > 0$ that

$$|\{x \in E : |f(x)| \ge \alpha\}| \le \frac{1}{\alpha} \int_E |f(x)| dx.$$

Theorem 14 (Fatou's Lemma). Let $\{f_n\}_{n=1}^{\infty} \subset L^1(E)$ be a sequence of positive functions. Then we have

$$\int_E \liminf_{n \to \infty} f_n(x) dx \le \liminf_{n \to \infty} \int_E f_n(x) dx.$$

This holds even if the left hand side is infinite.

Theorem 15 (Monotone Convergence). Let $\{f_n\}_{n=1}^{\infty} \subset L^1(E)$ be an increasing sequence of positive functions which converge pointwise almost everywhere to f. Then, regardless of the integrability of f, we have

$$\lim_{n \to \infty} \int_E f_n(x) dx = \int_E f(x) dx.$$

Theorem 16 (Bounded Convergence). Let $|E| < \infty$. If $\{f_n\} \subset L^1(E)$ is a sequence of functions such that $|f_n| \leq M < \infty$ for all n, and $f_n \to f$ a.e., then

$$\lim_{n \to \infty} \int_E f_n(x) dx = \int_E f(x) dx.$$

Theorem 17 (Dominated Convergence). Let $\{f_n\} \subset L^1(\mathbb{R}^d)$ be a sequence of functions which converge pointwise a.e. to $f \in L^1(\mathbb{R}^d)$. If there is an integrable function $g \in L^1(\mathbb{R}^d)$ such that $|f_n| \leq |g|$ for all n, then we have

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f_n(x) dx = \int_{\mathbb{R}^d} f(x) dx.$$

|5|

Theorem 18 (Jensen's Inequality). Let $f \in L^1(E)$ with $|E| < \infty$, and let $\varphi : \mathbb{R} \to \mathbb{R}$ be a convex function. Then we have

$$\varphi\left(\frac{1}{|E|}\int_{E}f(x)dx\right) \leq \frac{1}{|E|}\int_{E}\varphi(f(x))dx.$$

This inequality is reversed if φ is concave.

Theorem 19 (Generalized Dominated Convergence^{*}). Let $\{f_n\} \subset L^1(\mathbb{R}^d)$ be a sequence of functions that converge pointwise a.e. to f. Let $\{g_n\} \subset L^1(\mathbb{R}^d)$ be a sequence of functions such that

- $\circ |f_n| \leq |g_n|$ for each n,
- There exists a $g \in L^1(\mathbb{R}^d)$ such that $g_n \to g$ a.e.
- $\circ \ \ We \ have \ as \ n \to \infty$

$$\int_{\mathbb{R}^d} g_n(x) dx \to \int_{\mathbb{R}^d} g(x) dx$$

Then, we obtain that

$$\int_{\mathbb{R}^d} f_n(x) dx \to \int_{\mathbb{R}^d} f(x) dx.$$

4 L^p spaces

Definition 8 (Conjugate Exponents). Let $1 \le p \le \infty$. We define p' to be the conjugate exponent to p given by the unique number which satisfies

$$\frac{1}{p} + \frac{1}{p'} = 1$$

For p = 1, we take $p' = \infty$ and for $p = \infty$, we take p' = 1.

Theorem 20 (Hölder's Inequality). Let $1 \le p \le \infty$. If p' is the conjugate exponent to p, then for any f, g measurable we have

$$\int |fg| \le \|f\|_{L^p} \|g\|_{L^{p'}}$$

Theorem 21 (Minkowski's Inequality). Let f, g be measurable functions and $1 \le p \le \infty$. Then

$$||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$$

Theorem 22 (Reverse Hölder). Let f be a measurable function. Then for $1 \le p \le \infty$ we can calculate

$$||f||_{L^p} = \sup\left\{ \left| \int_{\mathbb{R}^d} f(x)g(x)dx \right| : g \in L^{p'} \text{ and } ||g||_{L^{p'}} \le 1 \right\}.$$

Theorem 23 (L^p Duality/Riesz Representation). Let 1 . Then

$$(L^p(\mathbb{R}^d))^* \simeq L^{p'}(\mathbb{R}^d).$$

That is, any continuous linear map $T: L^p(\mathbb{R}^d) \to \mathbb{R}$ can be identified with a function $q \in L^{p'}(\mathbb{R}^d)$ such that

$$T(f) = \int_{\mathbb{R}^d} f(x)g(x)dx.$$

Definition 9 (Weak Convergence in L^p). For $1 we say a sequence <math>\{f_n\} \subset$ L^p converges weakly to $f \in L^p$, written as $f_n \rightharpoonup f$ if for every $g \in L^{p'}$ we have

$$\int f_n g \to \int f g.$$

For $p = \infty$, we can give an identical definition, but instead we call it weak * convergence (this is because $(L^1)^* \simeq L^\infty$, but $(L^1)^{**} \not\simeq L^1$).

Theorem 24 (Weak Compactness in L^p). For 1 , for every boundedsequence $\{f_n\} \subset L^p(\mathbb{R}^d)$, there exists a subsequence $\{f_{n_k}\}$ and $f \in L^p(\mathbb{R}^d)$ such that $f_{n_k} \rightarrow f$. Equivalently, this says that the unit ball on L^p is compact in the weak topology.

Definition 10 (Convolution). For two functions $f, g \in L^1(\mathbb{R}^d)$ we define their convolution by

$$f * g(x) := \int_{\mathbb{R}^d} f(x - y)g(y)dy.$$

One can check that this defines an L^1 function. This same formula defines convolution on different classes of spaces.

Theorem 25 (L^2 as a Hilbert Space). We can define an inner product on $L^2(\mathbb{R}^d)$ by considering

$$\langle f,g\rangle_{L^2} := \int_{\mathbb{R}^d} f(x)\overline{g(x)}dx.$$

Definition 11 (Weak L^p). A measurable function f lies in weak L^p if

$$N_p(f) := \sup_{\lambda > 0} \lambda^p |\{x : |f(x)| \ge \lambda\}| < \infty$$

We call the quantity $N_p(f)$ the weak L^p norm of f.

Summer, 2024

5 Fubini's Theorem

Theorem 26 (Fubini's Theorem). Let $f = f(x, y) \in L^1(\mathbb{R}^d \times \mathbb{R}^d)$. Then, for almost every x, the function $y \mapsto f(x, y)$ is measurable and in $L^1(\mathbb{R}^d)$. Moreover, we have

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} f(x, y) d(x, y) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x, y) dx dy = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x, y) dy dx.$$

Theorem 27 (Tonelli's Theorem). Let $f = f(x, y) \ge 0$ be measurable. Then for almost every x the function $y \mapsto f(x, y)$ is measurable and

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} f(x, y) d(x, y) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x, y) dx dy = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x, y) dy dx$$

This holds regardless of the integrability of f.

Theorem 28 (Layer Cake Formula). For $1 \le p < \infty$, we can calculate the L^p norm of a measurable function f by the formula

$$\int_{\mathbb{R}^d} |f|^p = p \int_0^\infty \lambda^{p-1} |\{x \in \mathbb{R}^d : |f(x)| \ge \lambda\}| d\lambda$$

6 Lebesgue Differentiation Theorem

Theorem 29 (Lebesgue Differentiation Theorem). Let $f \in L^1_{loc}(\mathbb{R}^d)$. Then for almost every point $x \in \mathbb{R}^d$, we have

$$\lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy = |f(x)|.$$

This theorem can be generalized to

$$\lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - f(x)| dy = 0,$$

and for more general classes of balls B_r .

Definition 12 (Maximal Function). For $f \in L^1(\mathbb{R}^d)$, we define the Hardy-Littlewood Maximal function by

$$\mathcal{M}f(x) := \sup_{B \ni x} \frac{1}{|B|} \int_{B} |f(y)| dy$$

where the supremum is taken over all balls containing x.

8

Theorem 30 (Vitali's Covering Lemma). Let \mathcal{G} be a possibly uncountable collection of balls $B \subset \mathbb{R}^d$ which have uniformly bounded diameter. Then there exists a countable collection of disjoint balls $\{B_k\}_{k=1}^{\infty}$ such that

$$\bigcup_{\mathcal{G}} B_{\alpha} \subset \bigcup_{k=1}^{\infty} 5B_k.$$

Here, we are using the notation that $5B_k$ is the ball with the same center as B_k but with 5 times its radius.

Theorem 31 (Hardy-Littlewood Maximal Inequality). There exists a constant C > 0 such that for any $f \in L^1(\mathbb{R}^d)$ we have

$$|\{x \in \mathbb{R}^d : |\mathcal{M}f(x)| \ge \lambda\}| \le \frac{C}{\lambda} ||f||_{L^1(\mathbb{R}^d)}.$$

Equivalently, the maximal function $\mathcal{M}: L^1(\mathbb{R}^d) \to L^1_{weak}(\mathbb{R}^d)$ is continuous.

7 Absolute Continuity

Definition 13 (Bounded Variation). Let $f : [a, b] \to \mathbb{R}$. For a partition $\Gamma = \{a = x_0, x_1, \ldots, x_n = b\}$ of the interval [a, b], we define the sum

$$S_{\Gamma}(f) := \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$$

The function f is said to be Bounded Variation if $\sup_{\Gamma} S_{\Gamma}(f) < \infty$.

Definition 14 (Absolute Continuity). A function $f : [a, b] \to \mathbb{R}$ is Absolutely Continuous if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for any collection of non-overlapping sub-intervals $\{[a_i, b_i]\}_{i=1}^{\infty}$ of [a, b] with

$$\sum_{i=1}^{\infty} (b_i - a_i) < \delta$$

then we have

$$\sum_{i=1}^{\infty} |f(b_i) - f(a_i)| < \epsilon.$$

Theorem 32 (Absolute Continuity \Leftrightarrow Integration by Parts). A function $f : [a, b] \rightarrow \mathbb{R}$ is absolutely continuous if and only if f' exists a.e., f' is integrable, and

$$f(x) - f(a) = \int_{a}^{x} f', \quad \text{for } a \le x \le b$$

0	
9	

8 Functional Analysis*

Theorem 33 (Baire Category Theorem). Let (X, d) be a complete metric space. Then for any countable collection $\{U_n\}_{n=1}^{\infty}$ of open dense subsets of X,

$$\bigcap_{n=1}^{\infty} U_n \text{ is dense in } X.$$

Definition 15 (Weak/Weak* Convergence). Let X be a Banach space. Let $\{f_n\} \subset X^*$ be a sequence of functions. Then we say that f_n converges weakly to $f \in X^*$ if for every $G \in X^{**}$ we have.

$$G(f_n) \to G(f).$$

We say that f_n converges weak* to $f \in X^*$ if for every $x \in X$ we have

$$f_n(x) \to f(x).$$

If X is reflexive (in other words, $X \simeq X^{**}$) then we have weak convergence and weak^{*} convergent are equivalent.

Theorem 34 (Hahn-Banach). ...

Theorem 35 (Uniform Boundedness Principle). ...

Theorem 36 (Open Mapping Theorem). ...

Theorem 37 (Closed Graph Theorem). ...

Theorem 38 (Banach-Alaoglu). ...

M365C